
11.

DP-!’lS-71-17

USE OF PERFORMANCE ANAIYSIS STATISTICS IN COMPUTER
SYSTEM SIMULATION

By

P. R. Katonak

SRL
RECORD COPY

Savannah River Laboratory
E, 1, du Pent de Nemours G Company

Aiken, South Carolina 29801

A Paper Proposed for Presentation at the
Fifth Conference on applications of Simulation

New York, New York
December 8-10, 1971

June 11, 1971

This document was prepared in conjunction with work accomplished under Contract No.
AT(07-2)-1 with the U.S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical
Information Service, 5285 Port Royal Road, Springfield, VA 22161, phone: (800)
553-6847, fax: (703) 605-6900, email: orders@ntis.fedworld.gov online ordering:
http://www.ntis.gov/ordering.htm

Available electronically at http://www.doe.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.
Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN
37831-0062, phone: (865) 576-8401, fax: (865) 576-5728, email: reports@adonis.osti.gov

DP-MS-71-17

USE OF PERFORMANCEANAI.YSIS STATISTICS IN COMPUTER
SYSTEM SIMULATION*

P. R. Katonak

A continuous performance analysis program has been established in con-

junction with the System/360-65 Multiprocessor computer facility at Savannah

River Laboratory. This program provides the information base and analytical

methods required to:

@ Measure efficiency of operating system, user programs, and operational

policies.

“ Locate problem areas in operating systems or hardware.

0 Assist in determining operational strategies.

● Detect changes in overall workload or demand for services.

o Determine equipment changes that most economically fulfill increased

demands.

e Provide data for general information, special request management or

government reports, equipment feasibility and justification proposals,

and post-installation reports.

Data for the performance analysis program are collected from a variety

of sources. Systems activity information is continuously accumulated by an

accounting monitor routine. This monitor accumulates approximately 40 fields

of data relating to every aspect of system performance activity which can

readily be monitored for every step of each job processed through the system.

The accounting monitor provides a complete data base from which statistics on

CPU, core, and 1/0 activity can be summarized for any time period.

A hardware monitor is periodically used for direct measurement of com-

ponent utilization. This device can simultaneous

* The information contained in this article was
of work under Contract AT (07-2)-1with the U

y monitor a number of system

developed during the course
S. Atomic Energy Commission.

DP-MS-71-17

points (channels, control units, devices, or the CPU) providing wait or busy

status data for each point. Control panel wiring permits analysis of combina-

tional conditions (i.e., CPU wait and channel busy). This unit provides sup-

plemental timing and utilization information that is not available from the

accounting monitor.

Trace monitors which are background programs designed to continually

gather highly detailed operating statistics have been developed. Information

obtained through the trace analysis covers areas such as data set utilization,

usage of operating system routines, and time to service 1/0 requests and is

useful in determining contention between and utilization of system resources

(operating system routines, 1/0 and auxiliary storage devices, data channels,

etc.), and inefficiencies in specific programs. This type of information is

not readily available through use of either accounting or hardware monitors.

A benchmark test stream consisting of a series of actual jobs with over-

all attributes matching workload has also been developed. This test stream

consists of 37 jobs which require approximately 60 minutes of S/360-65 time

when run serially. The benchmark has been used for determining operational

strategies fouran MVT operation, and jn evaluating effect of system and hard-

ware changes on operational throughput.

Simulation has provided a method for effectively using performance analy-

sis statistics obtained from accounting, hardware, and trace monitors, as well

as experience gained through the use of the benchmark test stream, to analyze

and project computer system performance and hardware requirements. In this

approach, detailed timing data derived from the hardware and trace monitors

is used as the basis for cycle timings of the operating system and devices

within the body of the computer systenlmodel. Both multiprogramming (MVT) -

-2-

DP-MS-71-77

and multiprocessing are

by the model is derived

test stream was used as

models and was valuable

This paper will be

simulated with this model. The workload processed

from accounting monitor statistics. The benchmark

the input workload in initial MVT job scheduling

in validating their accuracy.

concerned with the use of accounting monitor statis-

tics as the basis for probabilistic generation of the model workload. A

general description of the overall model with the logic used in various

modules is included in the Appendix. Additional descriptions of initial ap-

plications involving the use of the benchmark test stream can be found in

References 1 and 2.

METHODS OF SPECIFYING THE WORKLOAD IN COMPUTER SYSTEM MODELS

The use which can be made of a computer system simulation model is highly

dependent upon the manner in which the workload being received and processed

by this model is defined. A variety of approaches have been taken for desig-

nating this workload in computer system simulation and mathematical modeling

studies. One, which minimizes presimulation analysis of the actual workload,

specifies the workload in terms of job interarrival rates plus service times.
s

An alternate approach which probably involves the greatest amount of detailed

workload data utilizes trace monitor output as the basis for the defined work-

load.4 The packaged computer system simulation programs such as CASE and

SCERT define the workload in terms of file descriptions and type of operations.
5

None of the above approaches was suitable for use in the computer system

model designed for use in analyzing hardware requirements and operational strat-

egies at Savannah River Laboratory (SRL). The monthly workload at SRL consists

of several thousand nonproduction scientific jobs written primarily in Fortran

-3-

DP-MS-71-17

and several hundred repetitive scientific and business production jobs

written in both Fortran and Cobol, antiis overall CPU bound. Because of

the preponderance of nonproduction joks and the continual changes in both

volume and characteristics of these jobs, it was highly desirable to develop

a model whereby the defined workload could be stated in terms of the work-

load currently being processed or projected on the actual computer system.

Specifications of the workload in terms of interarrival rates and service

times, although easy to define, did not provide an adequate indication of

the variance in CPU time, 1/0 requirements, and core size between the

various jobs processed. Use of the trace monitor data to define the work-

load was not considered to be practical because of problems in selecting

representative programs from the overall workload for tracing, and the vast

amount of additional detail which would be required within the model to

‘utilize the trace data. The packaged simulation workload definition method,

whereby files and operations are specified for each job processed, was not

considered because of the wide variet)’of jobs being processed and the

temporary nature of the bulk of the jobs making up the workload.

In addition to the variation in SRL workload characteristics on a

month-to-month basis, the manner in which jobs are received and processed

indicates a considerable difference in job-mix between operating shifts.

For example, the bulk of the Fortran compile and GO jobs are received on

the day shift and processed on a 60 m~.nuteor less turnaround basis. These

jobs have below average core and CPU time requirements and are essentially

1/0 bound. The 4 p.m. to 12 midnight shift job-mix is made up of overflow

jobs from day shift and a few routine CPU bound production jobs and thus has

a different overall profile from the day shift. The 12 midnight to 8 a.m. ‘

-4-

DP-MS-71-17

shift workload is primarily devoted to long running CPU bound production jobs

and, therefore, has a third profile. The relative job characteristics for

the three shifts are illustrated in Figure 1. As a result, each shift must

be considered independent in making studies concerning operating strategies

or hardware requirements. Therefore each shift workload must be defined by

its own unique set of attributes in the simulation model, and thus a simpli-

fied method of workload definition is an absolute necessity. To meet this

objective, the routine accounting monitor analysis programs were modified to

provide the basic workload statistics required by the computer simulation

model.

JOB PROFILE STATISTICS

The primary attributes selected to define the workload include step core

,size, CPU time, and 1/0 time. This data provides the basis for simulation

studies relating to system core requirements, CPU utilization, and 1/0 con-

tention under varying operating conditions. These three areas have been of

prime interest to date in the SRL S/360-65 configuration.

Figure 2 includes three simple frequency distributions of step charac-

teristics for a typical day shift operation directly summarized from the

accounting monitor analysis. Figure ?A, which illustrates the proportion of

steps within each 60K step size interval, indicates that 75% of all steps on

this shift are either 60-120K bytes or 180-240K bytes. Figure 2B, which in-

dicates the percentage of total day shift steps which fall into various CPU

time intervals, shows that 80% of the day shift steps utilize the CPU for

less than 10 seconds. Figure 2C summarizes steps by % 1/0 interval and

indicates that 60% of these steps are 80% or greater 1/0. (1/0 time, unlike

core size and CPU time, is not directly measured by the accounting monitor

-5-

‘ .

2s
t A,

ALL

SI?E (K)

I
12

SMIFT

k
8.

STEP
CPU Sgc

la

ALL

—

T
SH\f T

—

SH \FT

-6-

. .

DP-MS-71-17

because of the problems involved in differentiating between a step’s 1/0

time and its involuntary wait time in a multiprogramming environment. Step

1/0 time is therefore estimated from the 1/0 channel program counts which can

be accumulated for each step by the accounting monitor.)

In addition to the simple frequency distributions of the percent of

steps

sible

total

within various core sizes, CPU time, and % 1/0 ranges, it is also pos-

to relate these attributes to one another. Figure 3A shows the % of

CPU time for the day shift that is consumed by steps within various

core size intervals. Figure 3B illustrates the % of elapsed time (1/0 + CPU

time) which is consumed by steps in each % 1/0 interval. These figures pro-

vide a significantly different impression from that obtained from the simple

distributions in Figure 2. Although 45% of

size interval (Figure 2A), these steps only

‘ time (Figure 3A). Secondly, the 11% of the

the steps fall within the 60-120K

account for 15% of the total CPU

steps requiring 30% or less 1/0

(Figure 2C) account for 32% of the total elapsed time (Figure 3B).

Unfortunately, random selection of step attributes based upon the simple

frequency distributions as shown in Figure 2 will not provide attribute re-

lationshipsmatching those shown in Figure 3 for two reasons: CPU time is a

function of selected step size, and 1/0 time is a function of selected CPU

time in our job mix. The relationship between mean CPU time and step size

for the basic data in Figures 2 and 3 is shown in Figure 4. It is obvious

that independent assignment of step size and CPU time from Figures 2A and 2B

would not result in the direct relationship between CPU time and step size as

illustrated in the latter figure.

The distribution of CPU times also has been found to vary within each

core size interval. The cumulative distribution of steps by CPU time range

-8-

. ●

-9-

, .

-1o-

, . DP-MS-71-17

for three core size intervals are shown in Figures 5A to SC. Based upon these

differences, it is apparent that separate frequency distributions relating %

occurrences to CPU time must be used for each core size interval to properly

relate these attributes. The method in which this is done within the model

will be discussed in the following section.

Although a relationship betv!een1/0 time and core size can also be

found, a more significant correlation exists between 1/0 time and CPU time.

For example, it can be seen in Figure 6 that step CPU time is inversely

related to the step % 1/0. Assignment of 1/0 time independent of CPU time

would not result in a job-mix having this relationship.

Similar to the variation in CPU time for various core size intervals,

shown in Figure 5, the distribution of steps with various 1/0 requirements

as

fluctuates by CPU time group. Several examples illustrating distribution of

steps in each % 1/0 interval are shown in Figure 7. As previously mentioned,

the actual 1/0 time for the step can be calculated from the assigned CPU time

and % 1/0.

USE OF PROBABILITY DISTRIBUTIONS WITHIN WORKLOADGENERATION140DULE

The various probability distributions pertaining to job and step charac-

teristics are specified in function tables for use in the workload generation

module of the computer simulation model. A complete workload description con-

sists of 24 function tables relating to step size, CPU time, and % 1/0, and

two tables relating to job interarrival times and number of steps per job. A

list of the types of function tables is given below:

-11-

#

I

●

A.

&o-!%o K
2T8 ●*

366-4ZOK

v , 1
1- 10- lao- o- t- to - /ao- b- 1-)6 - 100.

I Ja 100 (w ! to IU Ioob I IO)00 I-

-12-

, *

100

eo

4
012 3!310405 (060>

-13-

* .

O 80 10 I*

a.

10-- CPO SEC. STCPS

I

PEA CENT 1/0

t

-14-

< .

DP-MS-71-17

Description of Functions No. of Tables

Distribution of Job Interarrival Times 1

Distribution of Steps per Job 1

% of Steps in each Core Size Interval 1

Distribution of Step Sizes within each Interval 7

Distribution of CPU Time in each Core Size Interval 7

Distribution of % 1/0 for each CPU Time Interval 8

Figure 8 illustrates the points in which accounting monitor analysis function

tables are employed in the workload generation module. A number of required

control blocks within this module are not shown in order to simplify the flow-

chart. The source and use of each function entity is described as follows:

● GENERATE JOB TRANSACTION: The actual clock time each computer job

enters the system is stored in that jobts accounting monitor record.

A probability distribution function with the % of occurrences as the

dependent variable and the seconds between successive jobs as the in-

dependent variable can be defined for the time period to be simulated.

This function is used to generate jobs at approximately the actual

interarrival time (IAT) rate. Although the example indicates the use

of only one IAT distribution function during the entire simulation

period, multiple generate blocks with independent functions could be

used if warranted by actual arrival rate fluctuations.

. SPLIT INTO STEPS: The distribution of steps per job is defined in a

function table. The SPLIT block creates copies of the job transaction

based upon the step function and these new transactions are identified

as job-steps. The job transaction is then temporarily held in a USER

CWIN while the step attributes are selected and assigned to each job-

step transaction.

-15-

, ●

GE NERATS MOOULE

T

GENERATE

JOB

SECONOS 8ENEsN J06S 40n
A

I I

I STEPS I

J08

LINK To &SS16N

USERCUAl~ SIZE GWOP
1 I

‘“L

I ‘“l--lz-‘-*ASSIGN
4 “1”*20 60-120 K sTEfi

CPU SECS
10

1236)0 3b Ibb 7

CPU sEC/STEP

ASSIGN

“I, r/0

STEPS / Joe

30
1 s-10 CPUSEC5TCPS

-16-

< ●

●

0

0

●

lJIJ-M>-/l-l/

ASSIGN SIZE GROUP: Using the ‘f%of steps in each core size interval”

function, a core size group or interval number is assigned to each step

(i.e., group number 1 for core size range between 60-120K to group number

7 for 420-480K steps). This number represents the core size interval

which the step is in and serves as a pointer to appropriate function

tables used in subsequent core size and CPU time assignment blocks.

ASSIGN CORE SIZE: Seven functions define the actual distribution of ex-

pected core size for steps within each group. Using the core size group

number as the argument, the step is assigned a core value obtained from

the appropriate distribution of step size function as determined from the

size group pointer.

ASSIGN CPU SECONDS: Separate functions also define the probability of

different CPU times for steps within each size group. Using the core size

group number as a pointer, step CPU seconds are selected from the appro-

priate CPU time function table.

ASSIGN % 1/0: A separate function relating % occurrences to % 1/0 is de-

fined for each CPU time interval. Using the previously assigned CPU time

as a pointer, step % 1/0 is selected from the appropriate % 1/0 function

table. Step serial elapsed time is equal to CPU Sec/(1-%1/O/100), and 1/0

time is equal to elapsed time minus CPU time.

The remainder of the generate module summarizes CPU time, 1/0 time, and max-

imum core sizes for all steps within each job, This data is passed to the

job transaction after all step transactions are created for the job.

Validation of the probability distribution method was performed by com-

paring a variety of statistics concerning the simulated workload with account-

ing monitor analysis data from the actual workload, Several of these comparisons

-17-

, .

DP-MS-71-17

are illustrated in Figure 9. Simulation data was generated for an average

day’s workload for one 8-hour-day shift operation. Actual data is taken

from analysis of the computer workload for the day shift for an entire month.

As indicated, while a minor variation exists in the distributions, the general

structures are identical. Comparisons of significant averages for the same time

period (Figure 10) indicates general agreement in overall statistics with dif-

ference being greatest for those averages with the smallest number of samples.

VALIDATIONAND USE OF THE SIMULATIONMODEL

Validity of the entire simulation model has been tested through the use

of the basic test stream. Initially che model (see Appendix) was designed

without consideration for 1/0 channel~, control units, and devices. In this

phase, 1/0 was handled either on a no contention (all 1/0 for every step was

available when required) or a full contention (only one job step could seize

the 1/0 facility at a time) basis.

Five configurations of S/360-65 single and multiprocessor systems were

evaluated with the simulation model using test stream job characteristics

for the model workload. The actual test stream was then actually run on

each of the configurations. A comparison of observed and simulation results

is shown in Figure 11. The model was later expanded to include auxiliary 1/0

storage capabilities. The resulting simulation runs for the 1/0 model ran

within 5% of the observed results shown in Figure 11.

The primary use of the model to date has been to study future hardware

requirements necessary to meet projected workloads. Availability of the

model has permitted estimation of the relative throughput of various size

and speed systems for different workload projections. In addition, it has

been possible to analyze the relative value of alternative 1/0 storage -

-18-

.

●16

so

M
DISTRIBUTION

40

30

20

\o - “.’

1 I

10 20 >0 40 so 60 70 80 qo

‘/, I/0

30

20k10
@\tolao z40aoouo4a*e

STEP SIZE

% 30

20L
10

i

1

l———-——.——.—.~
IO Z03040S0607080 90

-19-

●

FIGURE 10 Comparison of Selected Averages

Attribute

Step Size

Time/Job
CPU sec
1/0 sec

% 1/0

Elapsed Time, sec
60-119K Steps
120-179K Steps
180-239K Steps
240-299K Steps
300-359K Steps

Mean Value % Total
Workload* Simulation** =

152K 151K

48.9 48.9
125.0 125.0

61 61

29.6 30.0
70.4 42.1
72.0 83.3
117.2 143.0
102.8 162.0

* Average for l-month day shift operation.

45
19
31
3
2

** Average for 8-hour day shift operation; workload generated
from l-month day shift statistics.

-20-

4

z. o

\,8

1.61

I
1

Ill I
,11 I

/:

II
I I

,11
I ill

I

Ill I

S\MWTLD
Fvu tlo cowr~unoA

-21-

‘

DP-MS-71-17

devices in different combinations to determine the most reasonable hard-

ware investment strategy. Figure 12 illustrates the simulated relative

system power for two types of theoretical workloads and three combinations

of 1/0 equipment. In both cases, 1/0 channel contention was assumed neg-

ligible. As illustrated, the high speed drum appears to provide more

benefits over a system with only direct access storage (DASD) units when

the workload is CPU bound than when the workload is 50% CPU time and 50%

1/0 time.

In the area of operational strategy, studies have been made concerning

job classing structures, initiator priority settings, and core allocation

methods.

SUMMARY

Although the approach taken with this simulation model does not pro-

vide the high degree of detail available from the more sophisticated versions,

it does provide a basis for planning and analysis through the use of actual

operating statistics. Furthermore, being modular in design, the additional

detail can be provided when the time and cost to expand existing logic is

justified by specific requirements. The present model provides a method for

using and projecting the vast amount of data routinely accumulated as part

of the continuing performance analysis program. When maintained in the proper

perspective to complement other evaluation techniques, this computer system

model can provide insight not otherwise available.

ACKNOWLEDGMENT

Work done by W. R. Hartshorn, L. F. Zimmerman, and J. L. Kilpatrick of

the SRL Computer Operations Division in development of the accounting monitor

-22-

●

NO 1/0 coNTWmON---- ---- ---

~. 4 DAsD + DRUM----- -----

~.~ DAsO----

,--

1.0 1.1 1.2 1.3 /.4

SOY. 1/0 WORK-D

MO 1/0 CWTFNTION------ ------ -

.5iQ--

C,-

r/0.

-23-

●

DP-MS-71-17

and related analysis programs has provided the data base which made this

simulation approach possible. The assistance of F. C. Fortune

who developed the CMAP routine and participated in the model design stage

was invaluable in providing the foundation for subsequent development. The

helpful critique of this paper by T. J. Bell of Rand Corporation was also

appreciated.

-24-

.

DP-MS-71-17

REFERENCES

1. Katonak, P. R. and Fortune, F. C., Sr. “Role of System Simulation in
a Continuous Computer Performance Analysis Program.” flinthAnnual
C~nference of Southeastern.Region ACM, St. Petersburg Beach, Florida
(1970).

2. Katonak, P. R. “Performance Analysis of the Multiprocessor/6S through
Simulation.” SHARE XXXV, Montrea2, Canada (1970).

3. Hoffman, E. G. “Studying Multiprogramming Systems with Queuing Theory.”
Datamation, 13:6, 47 (1967).

4. Cherg, P. S. “Trace-Driven System Modeling.” IBM Systems Journal, 8,
280 (1969).

5. Pomerontz, A. G. “Predict Your Systems Fortune: Use Simulations
Crystal Ball.” Co~uter Decisions, 2(6)(1970).

-25-

.

DP-MS-71-17

Ap~ENDIx I

DESCRIPTION OF BASIC JOB SCHEDULING MODEL

The basic job scheduling model simulates a workload consisting of a

predefine combination of jobs and job-steps with varying core sizes, CPU,

and 1/0 requirements through a S/360-65 computer system in a multiprocessing

and/or multiprogramming mode of operation. The basic model consists of ap-

proximately 400 cards of which approximately half are used for function,

save value, and table definitions. The CPU running time for simulating a

given time period will vary proportionally with the defined 1/0 cycle time.

When the actual measured mean 1/0 cycle time is used, the simulation CPU

time on the S/360-65 will be approximately 20% of the actual CPU running

time for the same set of jobs. If the simulation cycle time is increased

by a factor of four, CPU running time will drop to 5% of the actual CPU time

for the period being simulated. The model runs in 140K bytes. Less than one

man year has been spent in the simulation modeling effort by computer oper-

ating systems personnel assigned to this project.

As shown in Figure 1, the model consists of seven separate modules. The

simulation is written in GPSS but calls one FORTRAN subroutine via a HELP

block. Individual modules can be expanded or modified without altering other

modules, as long as the appropriate savevalues and transaction parameter values

are always processed in a standard manner. The basic transaction, except for

two cases,represents either a job or job-step. Both types of transaction

carry the job number identification as one of the parameter values. In ad-

dition, a separate parameter is used to distinguish between each step in a.

multiple step job and the job master transaction. The two cases where a trans-

action represents something other than a job or step are for system initialization

-26-

i

.

I

I If
A B c D

.

I I I 3.

BDC CAD AC
& b

1. Generate Jobs & Steps

2. Classify Jobs

1

FIG. 1 BASIC JOB SCHEDULING MODEL
Multiprogramming with a Variable Number of Tasks (MVT)

Start Job

Processing

[s Initiators
with Classes
as Assigned)

4. Obtain Core

[Wait for CPU)

5. ComDute

6. InDut/OutPht

7. Terminate

Steps

Job

-27-

●

DP-MS-71-17

and simulation run timing purposes and are created by GENERATION blocks not

shown on Figure 1.

The basic function of each of the modules shown in Figure 1 is as

follows:

1. Generate

The generate module creates jobs and job-step transactions represent-

ing the workload being simulated. A description of parameter contents

for these job and job-step transactions is shown in Figure 2. Three

alternative methods have been used to date to represent the simulated

workload. These include (1) predefining job and step attributes in

function tables and using the ASSIGN block to transfer the attributes

to appropriate job and step transaction parameters, (2) creating an

input JOBTAPE of job and step transactions directly from the account-

ing monitor record for a given time period, and (3) generating a series

of transactions from probability distribution tables created by account-

ing monitor analysis of an actual workload. The probability distribu-

tion technique is discussed in detail in the body of this paper. The

job-step transaction is linked to a user chain at the end of the genera-

tion module.

2. Classify

Each job transaction is classified according to the algorithm being

used or under consideration with the system. The purpose of the classifi-

cation scheme is to control the mix of jobs being processed at any one

time from a wide variety of available jobs and to optimize CPU, core,

and 1/0 utilization. Classification schemes can be based upon job core

-28-

.

-29-

.

FIG. 3 JOB CLASSIFICATION ~~ic BASED ON ~me, ~INES, AtiD CORE

-30-

G
INITIATOR CLASS MATR\X

aNEmTE
%

INITIATOR No.

L-A

C%UMU
CLASS

[1
1 2(B) 3(C) i(A)

=0 PRloRiTY 2 4 (0) i(~) 3 (c)

LEVEL 3 3(C) 4(D) –

t
1

I
__-—. -.

N

Y UNLINK JOO Y

U.C.(RW,c~

*

Y
LAST
RoW

PROCESSCD

?

F16. 4 START ~oo~L~ OPERATIOA (WASED

TMc

To

-31-

.

DP-MS-71-17

requirements, % 1/0, CPU time, elapsed time, amount

combination of these or other factors. Using GPSS,

is accomplished by using the TEST block to evaluate

transaction parameters.

of output or a

classification

appropriate job

An example of the simulation logic for a classificationmodule based

on core size, serial processing time, and output volume is shown in

Figure 3. The assigned job class is stored in a transaction parameter

for reference in later steps. Job transactions are linked to a USER

CHAIN (user chain blocks for four classes A, B, C, and D are repre-

sented by respectively labeled biocks in Figure 1) associated with

the assigned class.

3. Start

The START module is divided into two sections. The first, which oper-

ates only at the beginning of a simulation, activates each initiator

with the highest predefine priority class job available in the various

job class user chains. For example, the START module (Figure 1) would

attempt,to UNLINK a class B job for the first initiator. In the event

there were no class B jobs available, START would attempt to find a

“D” or as a last resort, a “C” class job. In the event that none of

the classes were available, the initiator would stay idle until a new

job ofone of the matching classes entered the system. After an attempt

is made to attach a job to each initiator, the transaction which operates

the first section of the

tiation is controlled in

GPSS logic for the START

START module terminates and subsequent job ini-

the TER*!INATEmodule.

module is shown in Figure 4. As illustrated.by

the initiator class matrix, a MATRIX SAVEVALUE is predefined with the

-32-

. .

DP-MS-71-17

4.

classes as assigned to each initiator. (An equivalent numeric code must

be used in the actual matrix.) This table can be changed to evaluate the

effect of alternative classing or initiator setting schemes on system

throughput for a given workload and configuration.

The second section of the start module controls the interaction between

job and job-step transactions. After a job is unlinked from the class

user chain and assigned to an initiator, the job transaction UNLINKS the

next matching sequential job-step transaction from the step user chain.

The assigned initiator number is placed in a parameter in both the job

and job-step transactions. The job transaction is then relinked to the

appropriate class user chain and the job-step transaction progresses to

the next module.

Core

The core requirement for each step is specified in a parameter in terms

of K (1024) bytes. This core must be provided in contiguous blocks

for each step, and the starting address for an assigned core block may

vary for multiple steps within the same job. To simplify programming,

a FORTRAN subroutine called CMAP was written for controlling core alloca-

tion within the simulation. The total amount of system core available

for user programs is established in the simulation initialization

through the use of a SAVEVALUE. This savevalue is passed to CMAP

establishes the upper limit of core available for user programs.

phase

which

The job-step transaction parameter containing the amount of core required

and a code indicating whether the core is being requested or returned is

passed to CMAP. This routine, which keeps track

of the core being used, assigns required core if

-33-

of the absolute locations

available, passes back a

. m

DP-MS-71-17

nonavailable parameter code when the core is requested but not available,

or removes the core blocks from active use status when the step is com-

pleted and core is returned. Job-step transactions are temporarily

placed on a USER CHAIN when adequate core is unavailable.

5. Compute

The compute module loops each job-step transaction through the CPU(s)

for the number of cycles required to complete the CPU seconds specified.

The basic model time increment is one millisecond. The number of CPU-I/O

cycles is derived by dividing the computer 1/0 time for the steps by the

average 1/0 cycle time which is predefine in a SAVEVALUE. The average

CPU burst time is subsequently derived by dividing predefine job-step

CPU seconds by the number of calculated CPU-I/O cycles. The variance

between CPU burst times is recognized through the use of an exponential

function modifier to the CPU ADVANCE time. Separate CPU modules have

been written for single and multiprocessor systems.

6. Input/Output

The degree to which 1/0 is simulated can vary greatly. This, of course,

is dependent upon the area of interest and importance for a particular

Study . The degree of detail included in various 1/0 modules ranges from

none, where 1/0 requests are handled under either no 1/0 contention or

full 1/0 contention conditions between requests, to the case where activ-

ity for 1/0 channels, DASD control units, and disk drives are included.

A configuration of a multiprocessor model with expanded 1/0 facilities

is given in Figure 5.

The simple approach (no contention/full contention) provides useful .

estimates of the effect of CPU power and core size on system capacity.

-34-

,

.

1“CPU t I cPl)

-35-

DP-MS-71-17

7.

The extended approach is useful in studying the effect of 1/0 capacity

or data set distribution on throughput for a given workload and central

processing system. The latter module requires additional simulation input

data such as the distribution of data set usage among various control units

and devices. This information can be derived through accounting monitor

data analysis and incorporated into the model through the use of function

tables.

Modules have also been developed which ignore device and channel

activity. These modules, which reduce the simulation running time, are

valid for cases where device and channel contention is negligible.

As indicated under compute, the 1/0 cycle time is predefine by the

user. The average actual cycle time for our job-mix and configuration

is approximately 30 ms per 1/0 burst, as measured through detailed

trace analysis. It has been determined that artificially inflated cycle

times can be used in the model without affecting comparative simulation

results. This is of importance because the simulation running time is

directly proportional to the specified 1/0 cycle time.

Terminate

The function of the TERMINATE module, besides terminating steps which

have completed required CPU and 1/0 cycles, is to maintain continuity

of operation within the system. As previously discussed, the first

phase of START activates each initiator after a few jobs enter the

system. The terminate module is designed to keep initiators active,

if possible, by using the terminating jobs to pull the next available

job into the system. The initiator class matrix used in START is refer-

enced by TERMINATE to unlink the proper class jobs. This logic is shown

in Figure 6.

-36-

. .

FIG.

I ‘ STEP
I I
I +
I

I START

1
I
I

I

I

.- 1

-37-

